from the XmbTextListToTextProperty(3) man page:
"If insufficient memory is available for the new value string, the functions
return XNoMemory. If the current locale is not supported, the functions return
XLocaleNotSupported. In both of these error cases, the functions do not set
text_prop_return."
Reported by Steffen Nurpmeso <steffen@sdaoden.eu>, thanks!
Ref. https://git.suckless.org/st/commit/2f6e597ed871cff91c627850d03152cae5f45779.html
The bits of uint signal in an XKeyEvent which concern the key group (keyboard
layout) are bits 13 and 14, as documented here:
https://www.x.org/releases/X11R7.7/doc/libX11/XKB/xkblib.html#Groups_and_Shift_Levels
In the older version, only bit 13 was marked as part of XK_SWITCH_MOD, this
causes issues for users who have more than two keymaps. The 14th bit is not
in ignoremod, key sequences are not caught by match(), if they switch to a third
or fourth keyboard.
This reverts commit e8392b282c.
There is currently a bug in older ncurses versions (like on OpenBSD) where a
fix for a bug with REP is not backported yet. Most likely in tty/tty_update.c:
Noticed while using lynx (which uses ncurses/curses).
To reproduce using lynx: echo "Z0000000" | lynx -stdin
or using the program:
int
main(void)
{
WINDOW *win;
win = initscr();
printw("Z0000000");
refresh();
sleep(5);
return 0;
}
This prints "ZZZZZZZ" (incorrectly).
The sequence \e[Nb prints the last printed char N (more) times if it's
printable, and it's ignored after newline or other control chars.
This is Ecma-048/ANSI-X3.6 sequence and not DEC VT. It's supported by
xterm, and ncurses uses it when possible, e.g. when TERM is xterm* (and
with this commit also st*).
xterm supports only codepoints<=255, possibly due to internal limits.
We support any value/codepoint which was placed in a cell.
To test:
- tput rep 65 4 -> prints 'AAAA'
- printf "\342\225\246\033[4b" -> prints U+2566 1+4 times.
St uses a very good hack where mouse wheel genereates ^Y and ^E,
that are the same keys that less and vi uses for backward and
fordward scrolling. Scroll, as many terminal emulators, use
shift+Prev/Next for scrolling, but it is also using ^E and ^Y
for scroling, characters that are reserved in the POSIX shell
in emacs mode for end of line and yanking, making scroll unsable
in st.
This patch adds a new hack, making shift+wheel returning the
same sequences than shift+Prev/Next, meaning that scroll or
any other similar program will not be able to differentiate
between them.
Fix an issue with incorrect (partial) written sequences when libc wcwidth() ==
-1. The sequence is updated to on wcwidth(u) == -1:
c = "\357\277\275"
but len isn't.
A way to reproduce in practise:
* st -o dump.txt
* In the terminal: printf '\xcd\xb8'
- This is codepoint 888, on OpenBSD it reports wcwidth() == -1.
- Quit the terminal.
- Look in dump.txt (partial written sequence of "UTF_INVALID").
This was introduced in:
" commit 11625c7166
Author: czarkoff@gmail.com <czarkoff@gmail.com>
Date: Tue Oct 28 12:55:28 2014 +0100
Replace character with U+FFFD if wcwidth() is -1
Helpful when new Unicode codepoints are not recognized by libc."
Change:
Remove setting the sequence. If this happens to break something, another
solution could be setting len = 3 for the sequence.
st could easily tear/flicker with animation or other unattended
output. This commit eliminates most of the tear/flicker.
Before this commit, the display timing had two "modes":
- Interactively, st was waiting fixed `1000/xfps` ms after forwarding
the kb/mouse event to the application and before drawing.
- Unattended, and specifically with animations, the draw frequency was
throttled to `actionfps`. Animation at a higher rate would throttle
and likely tear, and at lower rates it was tearing big frames
(specifically, when one `read` didn't get a full "frame").
The interactive behavior was decent, but it was impossible to get good
unattended-draw behavior even with carefully chosen configuration.
This commit changes the behavior such that it draws on idle instead of
using fixed latency/frequency. This means that it tries to draw only
when it's very likely that the application has completed its output
(or after some duration without idle), so it mostly succeeds to avoid
tear, flicker, and partial drawing.
The config values minlatency/maxlatency replace xfps/actionfps and
define the range which the algorithm is allowed to wait from the
initial draw-trigger until the actual draw. The range enables the
flexibility to choose when to draw - when least likely to flicker.
It also unifies the interactive and unattended behavior and config
values, which makes the code simpler as well - without sacrificing
latency during interactive use, because typically interactively idle
arrives very quickly, so the wait is typically minlatency.
While it only slighly improves interactive behavior, for animations
and other unattended-drawing it improves greatly, as it effectively
adapts to any [animation] output rate without tearing, throttling,
redundant drawing, or unnecessary delays (sounds impossible, but it
works).