OOOO/◯ᴥᗱᗴᗝИNᗱᗴᙁ⚭ⵙ⚭ᙁᗱᗴИNᗝᗱᗴᴥ◯/2.90/SCRIPTS/ADDONS/OBJECT_RENDER_WIRE.PY

422 lines
16 KiB
Python

# ***** BEGIN GPL LICENSE BLOCK *****
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See th
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
# object_render_wire.py liero, meta-androcto,
# Yorik van Havre, Alejandro Sierra, Howard Trickey
# ***** END GPL LICENCE BLOCK *****
bl_info = {
"name": "Render Wireframe",
"author": "Community",
"description": " WireRender & WireSoild modes",
"version": (2, 3),
"blender": (2, 63, 0),
"location": "Object > Render Wireframe",
"warning": '',
'wiki_url': 'http://wiki.blender.org/index.php/Extensions:2.6/Py/Scripts',
'tracker_url': 'https://projects.blender.org/tracker/index.php?'\
'func=detail&aid=26997',
'category': 'Object'}
import bpy, mathutils
cube_faces = [ [0,3,2,1], [5,6,7,4], [0,1,5,4],
[7,6,2,3], [2,6,5,1], [0,4,7,3] ]
cube_normals = [ mathutils.Vector((0,0,-1)),
mathutils.Vector((0,0,1)),
mathutils.Vector((0,-1,0)),
mathutils.Vector((0,1,0)),
mathutils.Vector((1,0,0)),
mathutils.Vector((-1,0,0)) ]
def create_cube(me, v, d):
x = v.co.x
y = v.co.y
z = v.co.z
coords=[ [x-d,y-d,z-d], [x+d,y-d,z-d], [x+d,y+d,z-d], [x-d,y+d,z-d],
[x-d,y-d,z+d], [x+d,y-d,z+d], [x+d,y+d,z+d], [x-d,y+d,z+d] ]
for coord in coords:
me.vertices.add(1)
me.vertices[-1].co = mathutils.Vector(coord)
def norm_dot(e, k, fnorm, me):
v = me.vertices[e[1]].co - me.vertices[e[0]].co
if k == 1:
v = -v
v.normalize()
return v * fnorm
def fill_cube_face(me, index, f):
return [index + cube_faces[f][i] for i in range(4)]
# Coords of jth point of face f in cube instance i
def cube_face_v(me, f, i, j):
return me.vertices[i + cube_faces[f][j]].co
def cube_face_center(me, f, i):
return 0.5 * (cube_face_v(me, f, i, 0) + \
cube_face_v(me, f, i, 2))
# Return distance between points on two faces when
# each point is projected onto the plane that goes through
# the face center and is perpendicular to the line
# through the face centers.
def projected_dist(me, i1, i2, f1, f2, j1, j2):
f1center = cube_face_center(me, f1, i1)
f2center = cube_face_center(me, f2, i2)
axis_norm = (f2center - f1center).normalized()
v1 = cube_face_v(me, f1, i1, j1)
v2 = cube_face_v(me, f2, i2, j2)
v1proj = v1 - (axis_norm * (v1 - f1center)) * axis_norm
v2proj = v2 - (axis_norm * (v2 - f2center)) * axis_norm
return (v2proj - v1proj).length
def skin_edges(me, i1, i2, f1, f2):
# Connect verts starting at i1 forming cube face f1
# to those starting at i2 forming cube face f2.
# Need to find best alignment to avoid a twist.
shortest_length = 1e6
f2_start_index = 0
for i in range(4):
x = projected_dist(me, i1, i2, f1, f2, 0, i)
if x < shortest_length:
shortest_length = x
f2_start_index = i
ans = []
j = f2_start_index
for i in range(4):
fdata = [i1 + cube_faces[f1][i],
i2 + cube_faces[f2][j],
i2 + cube_faces[f2][(j + 1) % 4],
i1 + cube_faces[f1][(i - 1) % 4]]
if fdata[3] == 0:
fdata = [fdata[3]] + fdata[0:3]
ans.extend(fdata)
j = (j - 1) % 4
return ans
# Return map: v -> list of length len(node_normals) where
# each element of the list is either None (no assignment)
# or ((v0, v1), 0 or 1) giving an edge and direction that face is assigned to.
def find_assignment(me, edges, vert_edges, node_normals):
nf = len(node_normals)
feasible = {}
for e in edges:
for k in (0, 1):
fds = [(f, norm_dot(e, k, node_normals[f], me)) for f in range(nf)]
feasible[(e, k)] = [fd for fd in fds if fd[1] > 0.01]
assignment = {}
for v, ves in vert_edges.items():
assignment[v] = best_assignment(ves, feasible, nf)
return assignment
def best_assignment(ves, feasible, nf):
apartial = [ None ] * nf
return best_assign_help(ves, feasible, apartial, 0.0)[0]
def best_assign_help(ves, feasible, apartial, sumpartial):
if len(ves) == 0:
return (apartial, sumpartial)
else:
ek0 = ves[0]
vesrest = ves[1:]
feas = feasible[ek0]
bestsum = 0
besta = None
for (f, d) in feas:
if apartial[f] is None:
ap = apartial[:]
ap[f] = ek0
# sum up d**2 to penalize smaller d's more
sp = sumpartial + d*d
(a, s) = best_assign_help(vesrest, feasible, ap, sp)
if s > bestsum:
bestsum = s
besta = a
if besta:
return (besta, bestsum)
else:
# not feasible to assign e0, k0; try to assign rest
return best_assign_help(vesrest, feasible, apartial, sumpartial)
def assigned_face(e, assignment):
(v0, v1), dir = e
a = assignment[v1]
for j, ee in enumerate(a):
if e == ee:
return j
return -1
def create_wired_mesh(me2, me, thick):
edges = []
vert_edges = {}
for be in me.edges:
if be.select and not be.hide:
e = (be.key[0], be.key[1])
edges.append(e)
for k in (0, 1):
if e[k] not in vert_edges:
vert_edges[e[k]] = []
vert_edges[e[k]].append((e, k))
assignment = find_assignment(me, edges, vert_edges, cube_normals)
# Create the geometry
n_idx = {}
for v in assignment:
vpos = me.vertices[v]
index = len(me2.vertices)
# We need to associate each node with the new geometry
n_idx[v] = index
# Geometry for the nodes, each one a cube
create_cube(me2, vpos, thick)
# Skin using the new geometry
cfaces = []
for k, f in assignment.items():
# Skin the nodes
for i in range(len(cube_faces)):
if f[i] is None:
cfaces.extend(fill_cube_face(me2, n_idx[k], i))
else:
(v0, v1), dir = f[i]
# only skin between edges in forward direction
# to avoid making doubles
if dir == 1:
# but first make sure other end actually assigned
i2 = assigned_face(((v0, v1), 0), assignment)
if i2 == -1:
cfaces.extend(fill_cube_face(me2, n_idx[k], i))
continue
i2 = assigned_face(((v0, v1), 1), assignment)
if i2 != -1:
cfaces.extend(skin_edges(me2, n_idx[v0], n_idx[v1], i, i2))
else:
# assignment failed for this edge
cfaces.extend(fill_cube_face(me2, n_idx[k], i))
# adding faces to the mesh
me2.tessfaces.add(len(cfaces) // 4)
me2.tessfaces.foreach_set("vertices_raw", cfaces)
me2.update(calc_edges=True)
# Add built in wireframe
def wire_add(mallas):
if mallas:
bpy.ops.object.select_all(action='DESELECT')
bpy.context.scene.objects.active = mallas[0]
for o in mallas: o.select = True
bpy.ops.object.duplicate()
obj, sce = bpy.context.object, bpy.context.scene
for mod in obj.modifiers: obj.modifiers.remove(mod)
bpy.ops.object.join()
bpy.ops.object.mode_set(mode='EDIT')
bpy.ops.mesh.wireframe(thickness=0.005)
bpy.ops.object.mode_set()
for mat in obj.material_slots: bpy.ops.object.material_slot_remove()
if 'wire_object' in sce.objects.keys():
sce.objects.get('wire_object').data = obj.data
sce.objects.get('wire_object').matrix_world = mallas[0].matrix_world
sce.objects.unlink(obj)
else:
obj.name = 'wire_object'
obj.data.materials.append(bpy.data.materials.get('mat_wireobj'))
return{'FINISHED'}
'''
class VIEW3D_PT_tools_SolidifyWireframe(bpy.types.Panel):
bl_space_type = 'VIEW_3D'
bl_region_type = 'TOOLS'
bl_context = "mesh_edit"
bl_label = "Solidify Wireframe"
def draw(self, context):
active_obj = context.active_object
layout = self.layout
col = layout.column(align=True)
col.operator("mesh.solidify_wireframe", text="Solidify")
col.prop(context.scene, "swThickness")
col.prop(context.scene, "swSelectNew")
'''
# a class for your operator
class SolidifyWireframe(bpy.types.Operator):
"""Turns the selected edges of a mesh into solid objects"""
bl_idname = "mesh.solidify_wireframe"
bl_label = "Solidify Wireframe"
bl_options = {'REGISTER', 'UNDO'}
def invoke(self, context, event):
return self.execute(context)
@classmethod
def poll(cls, context):
ob = context.active_object
return ob and ob.type == 'MESH'
def execute(self, context):
# Get the active object
ob_act = context.active_object
# getting current edit mode
currMode = ob_act.mode
# switching to object mode
bpy.ops.object.mode_set(mode='OBJECT')
bpy.ops.object.select_all(action='DESELECT')
# getting mesh data
mymesh = ob_act.data
#getting new mesh
newmesh = bpy.data.meshes.new(mymesh.name + " wire")
obj = bpy.data.objects.new(newmesh.name,newmesh)
obj.location = ob_act.location
obj.rotation_euler = ob_act.rotation_euler
obj.scale = ob_act.scale
context.scene.objects.link(obj)
create_wired_mesh(newmesh, mymesh, context.scene.swThickness)
# restoring original editmode if needed
if context.scene.swSelectNew:
obj.select = True
context.scene.objects.active = obj
else:
bpy.ops.object.mode_set(mode=currMode)
# returning after everything is done
return {'FINISHED'}
class WireMaterials(bpy.types.Operator):
bl_idname = 'scene.wire_render'
bl_label = 'Apply Materials'
bl_description = 'Set Up Materials for a Wire Render'
bl_options = {'REGISTER', 'UNDO'}
def execute(self, context):
wm = bpy.context.window_manager
sce = bpy.context.scene
if 'mat_clay' not in bpy.data.materials:
mat = bpy.data.materials.new('mat_clay')
mat.specular_intensity = 0
else: mat = bpy.data.materials.get('mat_clay')
mat.diffuse_color = wm.col_clay
mat.use_shadeless = wm.shadeless_mat
if 'mat_wire' not in bpy.data.materials:
mat = bpy.data.materials.new('mat_wire')
mat.specular_intensity = 0
mat.use_transparency = True
mat.type = 'WIRE'
mat.offset_z = 0.05
else: mat = bpy.data.materials.get('mat_wire')
mat.diffuse_color = wm.col_wire
mat.use_shadeless = wm.shadeless_mat
try: bpy.ops.object.mode_set()
except: pass
if wm.selected_meshes: objetos = bpy.context.selected_objects
else: objetos = sce.objects
mallas = [o for o in objetos if o.type == 'MESH' and o.is_visible(sce) and o.name != 'wire_object']
for obj in mallas:
sce.objects.active = obj
print ('procesando >', obj.name)
obj.show_wire = wm.wire_view
for mat in obj.material_slots:
bpy.ops.object.material_slot_remove()
obj.data.materials.append(bpy.data.materials.get('mat_wire'))
obj.data.materials.append(bpy.data.materials.get('mat_clay'))
obj.material_slots.data.active_material_index = 1
bpy.ops.object.editmode_toggle()
bpy.ops.mesh.select_all(action='SELECT')
bpy.ops.object.material_slot_assign()
bpy.ops.object.mode_set()
if wm.wire_object:
if 'mat_wireobj' not in bpy.data.materials:
mat = bpy.data.materials.new('mat_wireobj')
mat.specular_intensity = 0
else: mat = bpy.data.materials.get('mat_wireobj')
mat.diffuse_color = wm.col_wire
mat.use_shadeless = wm.shadeless_mat
wire_add(mallas)
return{'FINISHED'}
class PanelWMat(bpy.types.Panel):
bl_label = 'Setup Wire Render'
bl_space_type = 'VIEW_3D'
bl_region_type = 'TOOLS'
bl_options = {'DEFAULT_CLOSED'}
def draw(self, context):
wm = bpy.context.window_manager
active_obj = context.active_object
layout = self.layout
column = layout.column(align=True)
column.prop(wm, 'col_clay')
column.prop(wm, 'col_wire')
column = layout.column(align=True)
column.prop(wm, 'selected_meshes')
column.prop(wm, 'shadeless_mat')
column.prop(wm, 'wire_view')
column.prop(wm, 'wire_object')
column.separator()
column.operator('scene.wire_render')
column.label(text='- - - - - - - - - - - - - - - - - - - - - -')
col = layout.column(align=True)
column.label(text='Solid WireFrame')
layout.operator("mesh.solidify_wireframe", text="Create Mesh Object")
col.prop(context.scene, "swThickness")
col.prop(context.scene, "swSelectNew")
bpy.types.WindowManager.selected_meshes = bpy.props.BoolProperty(name='Selected Meshes', default=False, description='Apply materials to Selected Meshes / All Visible Meshes')
bpy.types.WindowManager.shadeless_mat = bpy.props.BoolProperty(name='Shadeless', default=False, description='Generate Shadeless Materials')
bpy.types.WindowManager.col_clay = bpy.props.FloatVectorProperty(name='', description='Clay Color', default=(1.0, 0.9, 0.8), min=0, max=1, step=1, precision=3, subtype='COLOR_GAMMA', size=3)
bpy.types.WindowManager.col_wire = bpy.props.FloatVectorProperty(name='', description='Wire Color', default=(0.1 ,0.0 ,0.0), min=0, max=1, step=1, precision=3, subtype='COLOR_GAMMA', size=3)
bpy.types.WindowManager.wire_view = bpy.props.BoolProperty(name='Viewport Wires', default=False, description='Overlay wires display over solid in Viewports')
bpy.types.WindowManager.wire_object = bpy.props.BoolProperty(name='Create Mesh Object', default=False, description='Add a Wire Object to scene to be able to render wires in Cycles')
bpy.types.Scene.swThickness = bpy.props.FloatProperty(name="Thickness", description="Thickness of the skinned edges", default=0.01)
bpy.types.Scene.swSelectNew = bpy.props.BoolProperty(name="Select wire", description="If checked, the wire object will be selected after creation", default=True)
# Register the operator
def solidifyWireframe_menu_func(self, context):
self.layout.operator(SolidifyWireframe.bl_idname, text="Solidify Wireframe", icon='PLUGIN')
# Add "Solidify Wireframe" menu to the "Mesh" menu.
def register():
bpy.utils.register_class(WireMaterials)
bpy.utils.register_class(PanelWMat)
bpy.utils.register_module(__name__)
bpy.types.Scene.swThickness = bpy.props.FloatProperty(name="Thickness",
description="Thickness of the skinned edges",
default=0.01)
bpy.types.Scene.swSelectNew = bpy.props.BoolProperty(name="Select wire",
description="If checked, the wire object will be selected after creation",
default=True)
bpy.types.VIEW3D_MT_edit_mesh_edges.append(solidifyWireframe_menu_func)
# Remove "Solidify Wireframe" menu entry from the "Mesh" menu.
def unregister():
bpy.utils.unregister_class(WireMaterials)
bpy.utils.unregister_class(PanelWMat)
bpy.utils.unregister_module(__name__)
del bpy.types.Scene.swThickness
bpy.types.VIEW3D_MT_edit_mesh_edges.remove(solidifyWireframe_menu_func)
if __name__ == "__main__":
register()